Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI
₡34.300

Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Adnan Masood

Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Adnan Masood

₡34.300
+ ¢2,800 de envío o gratis en pedidos mayores a ¢35,000
×

GO es una membresía anual que te brinda mayores beneficios para que podás disfrutár de la mejor experiencia de compra. El costo de la membresía es ¢14,900 por año.
Beneficios
  • ✔ Envío gratis siempre
  • ✔ Precios exclusivos
  • ✔ Soporte prioritario
Ver más detalles
×

Opciones de Envío

Las opciones de envío dependen de si el producto es elegible para entrega rápida o no. Podés distinguirlos por el icono de camión:

Elegible Entrega Rápida Tiempo Costo
2 Horas ¢3,500
Mismo Día ¢3,200
2 a 3 Días GRATIS*
No 3 a 5 Días GRATIS*

Excepciones

*Envío Gratis: El envío es GRATIS en órdenes mayores a ¢35,000, caso contrario es ¢2,800.

2 Horas: Entrega 2 Horas es con Uber Direct en zonas especificas y esta disponible de 8am a 1pm.

Mismo Día: Para entrega Mismo Día la orden debe ser realizada antes de las 2pm, caso contrario se convierte en Siguiente Día.

Línea Blanca: Línea blanca y otros productos pesados tienen un costo de envío de ¢10,000 en GAM y ¢25,000 fuera de GAM.

Libros: La mayoría de libros requieren de un proceso de importación y el tiempo de entrega es de 15 a 20 días naturales.

Correos de Costa Rica: En órdenes mayores a ¢35,000, cubrimos el costo del primer Kilo, el Kilo adicional tiene un costo de ¢1,300.

Encomiendas: Las Encomiendas tienen un costo de envío de ¢4,000 y se retiran en la terminal de buses seleccionada.

Fuera del GAM: El tiempo de entrega corresponde al tiempo que demoramos en entregar al servicio de mensajería que seleccionaste.

Unimart GO

Entrega Rápida Mismo Día
Ver opciones de envío aquí

tarjeta

Tarjeta Davivienda Unimart
Hasta 24 cuotas 0% interés aquí

×

Pedidos Internacionales

¿Cual es el tiempo de entrega en este tipo de producto?

Los pedidos internacionales tienen un tiempo de entrega de 15 a 20 días naturales puesto deben pasar por un proceso de importación al país.

¿Porque ofrecen este tipo de producto que aun no esta en el país?

Nos permite brindarte mas amplitud de opciones sin que vos tengas que hacer el trámite de importación. Nosotros lo entregamos directo en tu casa y el precio que ves publicado es el precio que vos pagás. Sin sorpresas.

Unimart GO

Pedido Internacional Entrega 15 a 20 Días
¿Porque este tiempo de entrega?

Cantidad:

¿Por qué comprar con Unimart?
Unimart garantia Garantía y respaldo local
Unimart excelente servicio Excelente servicio
Los mejores precios Los mejores precios

Pagos:

×

Métodos de Pago

Podés elegir cualquiera de las siguientes opciones de pago:

A) Tarjeta de Crédito o Débito

B) Cuotas de Credomatic, Credix y Davivienda

C) Transferencia Bancaria

D) SINPE Móvil

E) Zunify

Tarjeta, Transferencia, SINPE Móvil, Zunify Más info

En cuotas:

×

Opciones de Cuotas

Tarjeta Programa Cantidad de Cuotas Cuota
Credomatic Tasa Cero 3 ₡11.433
Credomatic Tasa Cero 6 ₡5.717
Credomatic Tasa Cero 12 ₡2.858
Credomatic Mini Cuotas 24 ₡2.014
Credix 0% interés 3 ₡11.433
Credix 0% interés 6 ₡5.717
Credix 0% interés 10 ₡3.430
Credix Cuoticas 3.2% 24 ₡2.069
Credix Cuoticas 3.2% 36 ₡1.618
Davivienda Paguitos 0% 3 ₡11.433
Davivienda Paguitos 0% 6 ₡5.717
Davivienda Paguitos 0% 12 ₡2.858
Davivienda Unimart Paguitos 0% 18 ₡1.906
Davivienda Unimart Paguitos 0% 24 ₡1.429
Ver cuotas
Descripción

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls

Purchase of the print or Kindle book includes a free PDF eBook


Key Features:

  • Learn ethical AI principles, frameworks, and governance
  • Understand the concepts of fairness assessment and bias mitigation
  • Introduce explainable AI and transparency in your machine learning models


Book Description:

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance.

Throughout the book, you'll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You'll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You'll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you'll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You'll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations.

By the end of this book, you'll be well-equipped with tools and techniques to create transparent and accountable machine learning models.


What You Will Learn:

  • Understand explainable AI fundamentals, underlying methods, and techniques
  • Explore model governance, including building explainable, auditable, and interpretable machine learning models
  • Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction
  • Build explainable models with global and local feature summary, and influence functions in practice
  • Design and build explainable machine learning pipelines with transparency
  • Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms


Who this book is for:

This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Detalles
Formato Tapa suave
Número de Páginas 318
Lenguaje Inglés
Editorial Packt Publishing
Fecha de Publicación 2023-07-31
Dimensiones 9.25" x 7.5" x 0.67" pulgadas
Letra Grande No
Con Ilustraciones No
Acerca del Autor

Dawe, Heather

Heather Dawe, MSc. is a renowned data and AI thought leader with over 25 years of experience in the field. Heather has innovated with data and AI throughout her career, highlights include developing the first data science team in the UK public sector and leading on the development of early machine learning and AI assurance processes for the National Health Service (NHS) in England. Heather currently works with large UK Enterprises, innovating with data and technology to improve services in the health, local government, retail, manufacturing, and finance sectors. A STEM Ambassador and multidisciplinary data science pioneer, Heather also enjoys mountain running, rock climbing, painting, and writing. She served as a jury member for the 2021 Banff Mountain Book Competition and guest edited the 2022 edition of The Himalayan Journal. Heather is the author of several books inspired by mountains and has written for national and international print publications including The Guardian and Alpinist.

Masood, Adnan

Adnan Masood, PhD is an artificial intelligence and machine learning researcher, visiting scholar at Stanford AI Lab, software engineer, Microsoft MVP (Most Valuable Professional), and Microsoft's regional director for artificial intelligence. As chief architect of AI and machine learning at UST Global, he collaborates with Stanford AI Lab and MIT CSAIL, and leads a team of data scientists and engineers building artificial intelligence solutions to produce business value and insights that affect a range of businesses, products, and initiatives.
Garantía & Otros
Garantía: 30 dias por defectos de fabrica
Peso: 0.549 kg
SKU: 9781803230528
Publicado en Unimart.com: 27/05/24
Feedback:
¿Viste un precio más bajo? Queremos saber.
×

Informános Sobre un Mejor Precio

Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI


¿Viste un precio más bajo? Queremos saber. Aunque no podemos igualar todos los precios, usaremos tus comentarios para asegurarnos que nuestros precios sean competitivos.

¿Adonde viste un precio más bajo?

×
Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Opiniones & Preguntas