Neural Networks and Deep Learning: A Textbook
₡61.000

Neural Networks and Deep Learning: A Textbook

Charu C. Aggarwal

Neural Networks and Deep Learning: A Textbook Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook

Charu C. Aggarwal

₡61.000
Envío Gratis
×

GO es una membresía anual que te brinda mayores beneficios para que podás disfrutár de la mejor experiencia de compra. El costo de la membresía es ¢14,900 por año.
Beneficios
  • ✔ Envío gratis siempre
  • ✔ Precios exclusivos
  • ✔ Soporte prioritario
Ver más detalles
×

Opciones de Envío

Las opciones de envío dependen de si el producto es elegible para entrega rápida o no. Podés distinguirlos por el icono de camión:

Elegible Entrega Rápida Tiempo Costo
2 Horas ¢3,500
Mismo Día ¢3,200
2 a 3 Días GRATIS*
No 3 a 5 Días GRATIS*

Excepciones

*Envío Gratis: El envío es GRATIS en órdenes mayores a ¢35,000, caso contrario es ¢2,800.

2 Horas: Entrega 2 Horas es con Uber Direct en zonas especificas y esta disponible de 8am a 1pm.

Mismo Día: Para entrega Mismo Día la orden debe ser realizada antes de las 2pm, caso contrario se convierte en Siguiente Día.

Línea Blanca: Línea blanca y otros productos pesados tienen un costo de envío de ¢10,000 en GAM y ¢25,000 fuera de GAM.

Libros: La mayoría de libros requieren de un proceso de importación y el tiempo de entrega es de 15 a 20 días naturales.

Correos de Costa Rica: En órdenes mayores a ¢35,000, cubrimos el costo del primer Kilo, el Kilo adicional tiene un costo de ¢1,300.

Encomiendas: Las Encomiendas tienen un costo de envío de ¢4,000 y se retiran en la terminal de buses seleccionada.

Fuera del GAM: El tiempo de entrega corresponde al tiempo que demoramos en entregar al servicio de mensajería que seleccionaste.

Unimart GO

Entrega Rápida Mismo Día
Ver opciones de envío aquí

tarjeta

Tarjeta Davivienda Unimart
Hasta 24 cuotas 0% interés aquí

×

Pedidos Internacionales

¿Cual es el tiempo de entrega en este tipo de producto?

Los pedidos internacionales tienen un tiempo de entrega de 15 a 20 días naturales puesto deben pasar por un proceso de importación al país.

¿Porque ofrecen este tipo de producto que aun no esta en el país?

Nos permite brindarte mas amplitud de opciones sin que vos tengas que hacer el trámite de importación. Nosotros lo entregamos directo en tu casa y el precio que ves publicado es el precio que vos pagás. Sin sorpresas.

Unimart GO

Pedido Internacional Entrega 15 a 20 Días
¿Porque este tiempo de entrega?

Cantidad:

¿Por qué comprar con Unimart?
Unimart garantia Garantía y respaldo local
Unimart excelente servicio Excelente servicio
Los mejores precios Los mejores precios

Pagos:

×

Métodos de Pago

Podés elegir cualquiera de las siguientes opciones de pago:

A) Tarjeta de Crédito o Débito

B) Cuotas de Credomatic, Credix y Davivienda

C) Transferencia Bancaria

D) SINPE Móvil

E) Zunify

Tarjeta, Transferencia, SINPE Móvil, Zunify Más info

En cuotas:

×

Opciones de Cuotas

Tarjeta Programa Cantidad de Cuotas Cuota
Credomatic Tasa Cero 3 ₡20.333
Credomatic Tasa Cero 6 ₡10.167
Credomatic Tasa Cero 12 ₡5.083
Credomatic Mini Cuotas 24 ₡3.583
Credix 0% interés 3 ₡20.333
Credix 0% interés 6 ₡10.167
Credix 0% interés 10 ₡6.100
Credix Cuoticas 3.2% 24 ₡3.680
Credix Cuoticas 3.2% 36 ₡2.878
Davivienda Paguitos 0% 3 ₡20.333
Davivienda Paguitos 0% 6 ₡10.167
Davivienda Paguitos 0% 12 ₡5.083
Davivienda Unimart Paguitos 0% 18 ₡3.389
Davivienda Unimart Paguitos 0% 24 ₡2.542
Ver cuotas
Descripción

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:

The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2.

Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

Advanced topics in neural networks: Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neural networks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.

Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.

Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.


This book covers both classical and modern models in deep learning. The chapters of this book span three categories:

1. The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2. Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

2. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

3. Advanced topics in neural networks: Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neuralnetworks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

The book is written for graduate students, researchers, and practitioners. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques. The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition. Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.


Detalles
Formato Tapa dura
Número de Páginas 529
Lenguaje Inglés
Editorial Springer
Fecha de Publicación 2023-06-30
Dimensiones 10.0" x 7.0" x 1.19" pulgadas
Número de Edición 2
Descripción de Edición 2023
Letra Grande No
Con Ilustraciones Si
Acerca del Autor
Charu C. Aggarwal is a Distinguished Research Staff Member(DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has worked extensively in the field of data mining. He has published more than 400 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 20 books, including textbooks on data mining, recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of two IBM Outstanding Technical Achievement Awards (2009, 2015) for his work on data streams/high-dimensional data. He received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He is a recipient of the IEEE ICDM Research Contributions Award (2015) and ACM SIGKDD Innovation Award, which are the two most prestigious awards for influential research contributions in the field of data mining. He is also a recipient of the W. Wallace McDowell Award, which is the highest award given solely by the IEEE Computer Society across the field of Computer Science.
He has served as the general co-chair of the IEEE Big Data Conference (2014) and as the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference (2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the IEEE Transactions on Big Data, an action editor of the Data Mining and Knowledge Discovery Journal, and an associate editor of the Knowledge and Information System Journal. He has served or currently serves as the editor-in-chief of the ACM Transactions on Knowledge Discovery from Data as well as the ACM SIGKDD Explorations. He is also an editor-in-chief of ACM Books. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining and is a member of the SIAM industry committee. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms.
Garantía & Otros
Garantía: 30 dias por defectos de fabrica
Peso: 1.175 kg
SKU: 9783031296413
Publicado en Unimart.com: 10/08/24
Feedback:
¿Viste un precio más bajo? Queremos saber.
×

Informános Sobre un Mejor Precio

Neural Networks and Deep Learning: A Textbook


¿Viste un precio más bajo? Queremos saber. Aunque no podemos igualar todos los precios, usaremos tus comentarios para asegurarnos que nuestros precios sean competitivos.

¿Adonde viste un precio más bajo?

×
Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook

Opiniones & Preguntas